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Social Science Applications 
of Nonequilibnum 

Thermodynamics: Science or 
. Poetry? Procedures for the 

Precise Measurement of 
Energy in Social Systems . 

Joseph Woelfel* 
University of Buffalo 

NONEQ,UIlJBRIUM TIIERMODYNAMICS AS 
METAPHOR 

lliya Prigogine's pioneering analysis of the thermodynamics of nonequilibrium 

• The basic research for this work was perfonned while the author was a Senior Fellow at the 
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physical processes not only had important implications for physical scientists, but 
promised revolutionary impact on the social sciences as well. Fundamentally, the 
applicability of the model to social settings can be understood in the light of the 
Benard Instability (Prigogine & Nicolls, 1977). The Benard instability can result 
from a vertical temperature gradient in a horizontal liquid layer. The lower face 
of the layer is maintained at a fixed level higher than the temperature of the upper 
level by an external energy source. This sets up a permanent heat flux from bot­
tom to top. This far-from-equilibrium system is highly nonlinear, and can move 
abruptly to one of a multiplicity of stable states. Whether the stable heat flux does 
move to another state, and which state that might be, can be determined by 
extremely small random fluctuations in the system and its environment. In con­
trast, an equilibrium or near-equilibrium system has, in general, only one stable 
state. When perturbed slightly from equilibrium, the system will inevitably return 
to the single stable state. 

Both physical and social scientists were quick to recognize the rough similari­
ty between the situation described by the Benard Instability and everyday social 
and cultural phenomena. Loye and Eisler (1987), for example, considered "sys­
tems breakdowns" of two types to be candidates for description by nonequilibri­
urn thermodynamic theory: microcosmic crues and discontinuities such as 
financial crises, food crises, political anti military crises and the like, and macro­
cosmic crises, or "the great, overriding churning of history" of the type Polyani 
(1994) called "the great transformation." Smith and Gemmill (1991) rethought 
Lewin's (1947) classic formulation in terms of nonlinear thermodynamics to 
account for any kind of social restructuring in small groups. Contractor and 
Seibold (1993) described group decision support systems as examples of nonlin­
ear thermodynamiC systems. Woelfel and Fink (1980) considered human cogni­
tive processes as thermodynamic systems, and Fmk and Chen (1995) discussed 
organizational climate follOwing these authors. Jang and Barnett (1994) consid­
ered the network of interconnected corporations a nonequilibrium thermody­
namic system. 

On closer examination, however, only a select few of the hundreds of discus­
sions of nonequilibrium thermodynamics actually apply the theory to the phe­
nomena investigated. By far, the largest majority of such applications use the 
theory only metaphorically, treating the phenomena modeled "as if" they were 
nonequilibriurn thermodynamiC processes like the Benard Instability. The gross 
characteristics of a non-equilibrium thermodynamiC system are taken as analogs 
to similar gross characteristics of social phenomena Thus, we can model macro~ 

Communication Institute of the East West Centerin Honolulu, and I'm grateful for the support ofD.L 
Kincaid, Barbara Newton, and Richard Holmes,Jr. at the Institute, and to Jason RaInone White for 
help in the review of sodal science applications of nonlinear thermodynamiC models in the social sci­
ences at the University at BufIhlo. Thanks also to George A Barnett for his patience and editorial assis­
tance in what turned out to be a most difficult and time-consuming project 
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cosmic social and cultural sy~ms to be nonequilibriwn thermodynamic systems; 
if they were such, they would indeed be expected to "chum," and we should 
expect "great transformations." Similarly, if group decision support systems are. 
nonequilibriwn thermodynamic systems, we should expect abrupt transitions and 
shifts, even system failures. These predictions, of course, are easily confinned, 
lending credence to the hypothesis that social phenomena are indeed nonequilib­
riwn thermodynamic processes. However, recognizing that social phenomena are 
instances of nonequilibriuni thermodynamic processes is a far cry from success­
fully modeling them as such in a useful way. Even in cases where sedous m3.the­
maticsand equations are utilized,· the equations themselves generally model only 
the gross characteristics of the phenomena, and seldom make precise predictions 
about outcomes. Even when they do, the absence of measurement procedures for 
the phenomena in question turns the equations into metaphor. 

Q,uWtative vs. quantitative models 

The essence of any thermodynamic model is energy. The fundamental laws of 
thetn.l0dynamics are written as functions of energy; and the differences among 
various existing thermodynamic systems is entirely describable in the way in 
which energy flows through the system. It may be well argued, then, that no suc­
cessful mOdel of any phenomenon at all can be written in the absence of a satis­
factory definition of energy within that systelh and its. surroundings. To be 
successful, such a definition must, at a minimum, specify how energy is to be mea­
sured. In the absence of a clear and consensual definition of energy, and in the 
absence of any agreement over procedmes for the measurement of energy, any 
model based on thermodynamic principles will 8lways be simply metaphorical, 
and, ~ such, poetry rather than sciencel • 

. . What is needed. is a definition of energy within social systems that lends itself 
to pr~cise measurement In what follows, I try to produce a complete system' that 
allows for the measurement of energy within the domam of cognitive processes. 

A MECHANICAL MODEL 

The development of mechanics itself rests on certain formal logical advance­
mentS dud communication theorists for the most part have not yet adopted. In 
this chapter, specifically, it i$ my intention to attempt to model certain com-

I TIiose few papers which do produce successful models of social phenomena as thennodynam­
ic p~ of any type an ~me from a theoretical perspecnve-the Gallleo Model-which enjoys a 
clear and measwable defuiition of energy. See Bamett & Woelfel, 1988~ Woelfel, Bamett, Ptuzek & 
Zimmelman, 1989; Kincaid, et al, 1983; Kincaid, 1988. 
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munication phenomena in tenns of some of the most powerful of mechanical 
fonns, following what are most frequently called variational principles. At the 
$3llle time, I hope to illustrate the logical developments required for such a step 
and to show how communication theory has, as yet, failed to pass through these 
developmental stages. The development of a variational mechanical model of 
any phenomena depends specifically on four logical operations. The first of 
these is what I have called elsewhere the Cartesian measurement model 
{Woelfel, 1977}. The second is the development of functional representations of 
variables in tenns of the ratios given by measurements {Barnett, 1982}. The 
third operation requires the recognition and analysis of residual tenns in the 6'( 
functions, and the fourth requires the stipulation of minimization .#Stationary 
principles. Once these steps have been accomplished, the equations of motion 
or change for any configuration of the system of variables under consideration 
can always be written down. 

The Cartesian Measurement Model 

The first step in the development of the mechanics of any phenomena is the 
adoption of the Cartesian measurement model. This model consists entirely in 
arbitrary agreemenfs among participating scholars to measure phenomena as 
ratios to an arbitrary standard unit2• 

We have described the Cartesian or ratio method of measurement elsewhere 
in greater detail {Woelfel, 1977; Woelfel & FInk, 1980}, but it is useful here t<;> point 
out the fundamental difference between this model and the categorical logic. The 
categorical logic is a logic of inclusion and exclusion based on category mem­
bership. Reasoning or deduction is possible only on the basis of certain types of 
overlaps among categories. Thus, it is evident that if Socrates is a man, then he is 
mortal because the entire category man is included in the category mortal 
However, it is not possible to determine whether or not Shiela is a man on the 
basis of knowing she is featherless, because only part of the category featherless 
overlaps with the category man. In category logic, only three'outcomes are pos­
sible: yes, no, and doubtful; that is, no answer. An equation or syllogism in cate­
gory logic is either correct, wrOlig, or inconclusive. 

In Cartesian or comparative logic, however, relationships are not only 
expressed in tenns of inclusion and exclusion, but as infinitely variable numeri­
cal proportions or ratios. Thus, we may say that B is 2.6 times as long {or bright, 
or friendly} as A. Furthennore, if Cis 5.2 times as long {or bright, or friendly} as 

2 Descartes, of course, did not invent this method, but we refer to it here as the Cartesian model 
due to his explicit formal recognition of this model as a complete alternative lOgic in contradistinction 
to the categorical logic of Plato, Aristotle, and Aquinas who dominated the intellectual arena prior to 
the Renaissance. 
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A, then C is twice as long as B. 
There are two advantages to this system that are necessary for competent 

mechanics. First, this system can carry more information in a quantitative sense than 
the categorical logic; it is much m(Jfe infonnative. Secondly, because it is quantitative 
rather than categorical, when deductions based on this system are wrong {that is, 
when they yield outcomes that do not correspond to measurements}, they are not 
only wrong, as would be an erroneous deduction within a categorical syllogism, but 
they are wrung by a measurable quantity. Deductions within a categorical logic are either 
wrong or righ~ but each deduction within a comparative logic leaves a residual term. 
If the deduction is perfectly correc~ the residual term is zero; as errors increase, the 
residual term grows larger. The residual term is {important as we will see} because it 
not only provides a basis for knowing how accurate the logical system may be in any 
particular instance, but because it also provides, at once the basis for correcting errors 
and developing general principles for dealing with the phenomena in the future. 

As we will see, every principle of mechanical physics depends on comparative 
measurement and comparative logie, and no principle of physics is stated in any 
other terms than comparative terms. The measurement model of communication 
is still categorical, however, it cannot be described as "mechanical." 

Functional representation and time 

Just as the logic of categorical systems is based on the syllogism, the logic of com­
parative measurement is based on the fonction, a word introduced in 1694 by 
Leibnitz. The most elementary function within comparative lOgic is the function 
by which the pOSition of an element is determined. As we suggested earlier, the 
length of an object {or its friendliness or brightness,or any attribute} is expressed 
as a ratio to some' arbitrary length {or unit oflength, unit of brightness, unit of 
frienqJiness, etc.}. This arbitrary unit may be thought of with no loss in generali­
ty as a coordinate. axis, and the position of the element to be measured is then 
given as a {ratio} function of the original arbitrary element. Thus, if the element 
of length is the meter, and we imagine a coordinate axis laid in the direction of 
the meter, the position of the endpoint of the element to be measured is given by: 

y=[(m) 

where, y is the length of the unit to be measured, fis the function, and m is the 
length of the unit {one meter}. If the element to be measured is twice as long as 
the uni~ we could write the function more explicitly as: 

y=2m 

Less well-known is the fact that the Cartesian measurement model is com-
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pletely abstract and rests on no empirical foundation; hence, it may be applied 
without modification to the measurement of any experience, even an experi­
ence as abstract and as personal, for example, as affection3 (Hamblin, 1973; 
Woelfel, 1977; Woelfel & Fink, 1980). We may choose as an arbitrary standard 
unit, for example, the amount of affection one feels for the average stranger, 
and represent the amount of affection one feels for any arbitrary person or 
object as a function of this standard. We might like a friend twice as much, fot: 
example, and thus, write: 

y =f(x) (1) 

where y is the amount of affection we feel for our friend, [lS the function equal to 2, 
and x is the amount of affection we feel for the average stranger. So, we write again: 

y=2x (2) 

This, of course, is the same functional form we wrote· earlier to describe the 
length of an arbitrary unit or the position of an arbitrary object. The logi~ form 
is independent of the experience it represents. In order to illustrate the develop­
ment of mechanics of communication rather than physical experience, we Will 
continue to refer to affection toward a friend as the dependent variable, but it 
should be recalled that we might just as well refer to a physical point. 

So far, by adopting this system of measurement over the categorical system, 
we have gained some advantage in that it is more informative to say how much 
we care for the friend than to simply say that we care. Yet, we gain a: second 
advantage as important as the first-the ability to define new variables by apply­
ing functional reasoning. Suppose, for example, that we measure the attitude 
again at a later time and obtain a new value, h (We will now designate the old 
value as Yo to avoid confusion). This allows us to create the new variable: 

(3) 

We create the variable time by the same ratio method,4 and designate the time of 

3 Some communication researchers balk at the idea that ratio level measurement can be used as 
effectively for human data as other, cruder measures, such as Likert-type, semantic differential-type 
scales, or even simple ordinal measures. We have discussed these matters in detail elsewhere (Woelfel 
& Fink, 1980) as have others (Barnett, Hamlin & Danowski, 1981; Hamblin, 1973; Shinn, 1974; 
Stevens, 1951) and will not say more here, except to suggest that among those who are familiar with 

'c- th~dence about ratio measurement or "magnitude estimation" as it is often called, there 
'01)-1 . ---"'pmains little'fnthusiasm. 

4 It is worth noting that time is measured as ratios to a standard interval of time (usually the sec­
ond), and time, of course, is at least as abstract as affection, yet time is the most precisely measured 
variable in science. 
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$e first measurement as tl and the second as 1:0 so that: 

(4) 

Combining these two functions, we may create yet another new variable: 

v =t:.y I t:.t (5) 

where v is the ratio of the change in attitude to the change in time, or thus the rate 
of change of the attitude, or velocity of attitude change. In fact, this variable rep­
resents the average rate of change of the attitude over the interval (~ and leaves 
us ignorant of the rate of change or velocity at any precise moment, but we can 
.solve this difficulty by imagining the time interval (t growing smaller without limit 
and, as it does so, the average velocity across the (even smaller) interval can be 
made as accurate an approximation as we like to the instantaneous velocity. This 
instantaneous velocity is referred to. as the time derivative of the position (or atti­
tude) as is symbolized by 

so that 

t:.y dy 
LIm At =Tt 

At-+O 

dy 
vt=Tt 

(6) 

(7) 

Thus, vt repr~sents the instantaneous velocity or rate of change of the attitude at 
time t.5 

lite~ principles and residual terms 

It should be clear that Equation (7) defines the velocity of the attitude or its rate 
of change at a specific instant of time, and we are free to 'measure the velocity at 

51bis notation was first published by Leibnitz in 1677, and the same procedure was independently 
developed about the same time by Newton precisely to deal with experiences of a processuol nature, 
because they both believed that ordinary language was inadequate for the description of processes. 
To this day, the calculus remains the most powerful language lmown for describing processes. 
Although many communication scholars lay heavy emphasis on the processual nature of communi­
cation phenomena, and criticize contemporary communication theory and method for dealing with 
processes clumsily, the calculus is virtually non-existent in Communication journals and books, and 
very few human communication theorists have any lmowledge of it at all. Thus, while we may agree 
that contemporary hUman communication theory deals with processes in a clumsy fashion, we can­
not agree that it is because communication theory is mechanical, since a mechanics without ratio level 
measurement and the calculus could not rise much beyond the Greeks on lOgical grounds alone. 
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any number of such instants. This in turn gives rise to· the possibility that the 
velocity itself might change over time, and hence, becomes, itself, a function of 
time, or: 

v=/(t). (8) 

It is at this point that arbitrary but important stipulations or principles are 
introduced into a theory if it is to be a mechanical theory. These stipulations are 
rules in the sense that Cushman and Tompkins (1980) speak of them, but they are 
rules that scientists agree to honor solely for the purpose of developing a com­
mon framework for understanding and communicaqng their experiences. When 
they were originally postulated, their inventors and followers usually thought they 
were discoveries about the nature of reality, but later theorists realized they are, 
in fact, definitions of a frame of reference against which we gauge our experience. 
The first of these (usually called Newton's First Law) says that for any system ~at 
is left alone, (that is, which is not in communication with its near surroundings) 
there will be no changes in velocity. We might write: 

v = /(t) = constant (9) 

to indicate that velocity is a constant of time, or using the notation of the calculus: 

(10) 

where at equals the acceleration of the attitude at timet, which means that the 
change in velocity with regard to the change in time (acceleration) is zero. This 
principle is not meant, of course, to say that changes in velocity are impossible, 
but merely that any such change must be accounted for by means of some com­
munication of the moving element with itS enviroIunent. If we evaluate the deriv­
ative of the velocity, with regard to time, at some point in time (i.e., enter 
numerical measurements into Expression (10)) ·and find that it does not equal 
zero, but rather equals: 

a =dv =0+ k 
I dt ' (11) 

then the variable k expresses the magnitude of the communication from the envi­
ronment. The actual" value of this variable will depend on the arbitrary units ill 
which v and t are themselves measured. If, perhaps at some other time or for 
some other sample of data, we evaluate the same expression and find: 

(12) 

then the ratio klkl' will not depend on the units of measure, and will represent the 



M~SUREMENTOFENERGYLNSOC~SY£rnMS ~7 

ratio of forces impressed on the system from the environment at the two times or 
for the two samples. 

We have written Expressions (11) and (12) in what may seem a strange form 
to illustrate that these forces are measured as residual or leftover terms from what 
our stipulations would have led us to expect had the system been left alone; we 
will see again and again that what we call "explanatory variables" are always 
residual terms. The process of scientific explaTUltions always requires us to set up our ref 
erence frames in such a way that the residual tenns are minimi;:pl, and to seek processes r(I.. G t 
involving communication between the changing element and its environmerJfiTe correlated 
with the residual tenns. . 

One of the most important residual terms in mechanics is force, and force may 
be determined up to arbitrary constant by the method just described as 

FI K ~ 
-=-=- (13) 

F2 KI ~I 

This means that the ratio of forces is defined as the ratio of the observed accel­
erations. In this sense, force as a residual term is defined as "that which produces 
acceleration." As real as the concept of force has come to be to us after centuries 
of usage, we should nonetheless realize that there is no such entity in nature as 
"force," but rather force is a logical device which is wholly a product of the arbi­
trary conceptual system we have created to describe our experiences. It has as its 
counterpart one of the other most important residual variables in mechanics, iner­
tial mass, which is defined up to an arbitrary constant as the inverse ratio of the 
accelerations of any two elements under a constant force, or 

where 

m1 ~ 
m2 = Al 

m1 = the mass of the 1st element 
. m2 = the mass of the 2nd element 
a1 = the acceleration of the 1st element 
a2 = the acceleration of the 2nd element 

(14) 

It is easy enough to deduce from (14) that mass is the reciprocal of force, or "that 
which resists acceleration." Mass does not mean "quantity of matter" as Newton 
thought it did, but is.instead a residual term which accounts for the differential 
acceleration of different elements under constant force. There is no way to mea­
sure the mass of any body short of pushing it with a known (i.e., previously mea­
sured) force and measuring its acceleration relative to the acceleration of other 
elements (or attitudes) subject to the same force. Mass is not a quality of material 
objects, and it is every bit as sensible to say that some attitudes are harder to accel­
erate (have more mass) than others as it is to say that some material objects are 
harder to accelerate than others. 

As long as we deal with only one attitude, there is no need for inertial mass to 
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enter the equations, since inertial mass only refers to the resistance an attitude 
offers to acceleration relative to other attitudes. When we consider more than one 
attitude, however, we must modify equation (11) to include the mass of the atti­
tude. IT the mass does not vary with the time, i.e., if 

so that 

we may write (11) as 

or 

m = f(t) = constant, 

dm =0 
dt ' 

dv 
m-==F 

dt 

ma=F 

(15) 

(16) 

which is Newton's Second Law. We should not consider this a discovery about 
nature, however, since it is a consequence of our stipulation given in (10). 

IT the mass does depend on the time, then we must modify expression (14) to 
make it somewhat more general, and we obtain 

d di (mv}=F. (17) 

Once again, this generalized equation should not' be taken as a discovery 
about the nature of the world, but rather as a statement of principle. In words, 
equation 17 says that neither the mass nor the velocity nor both of them together 
ought to be expected to change spontaneously, but rather any change must be 
considered the result of the application of some force. The quantity in brackets in 
Equation (17) is called the linear momentum of the attitude, and (17) asserts that 
any changes in linear· momentum· must be the result of some communication 
with the environment; in fact, it must be equal to the magnitude of that commu­
nication. 

D'Alembert made this point explicitly by suggesting we write (m as: 

F- ~ (mv)=o, (18) 

and create the variable: 

I=-~(mv) 
dt ' 

(19) 

which allows us to write: 
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F+I=O. (20) 

We are able to interpret this new variable I as the force due to the motion of the 
attitude, or what we may call the inertial force, although we may refer to the force 
resulting from communication with the environment as the impressed force. 
Thus, Equation (20) may be interpreted as a principle that says the impressed 
forces plus the inertial forces (forces due to the motion) will sum to zero. As 
Lanczos says (1962): 

A given system of impressed forces will generally not be in equilibrium. This 
requires the fulfilling of special conditions. The total virtual work of the impressed 
forces will usually be different from zero. In that case, the motion of the system 
makes up for the deficiency. The body moves in such a way that the additional 
forces, produced by the motion, bri.rig the balance up to zero. In this way, 
d'Alembert's principle gives the equations of motion of an arbitrary mechanical system 
(Emphasis in original). (p. 90) 

So far, by adopting the Cartesian measurement rule, we were able to con­
struct two quantitative primitive variables-position (or length) and time. From 
these and the functional method of comparative logic, we have derived the 
additional descriptive variables-velocity and acceleration-the additional 
explanatory variables-force and mass-and the mixed. variable-momentum. 
None of these variables have any epistemological status other than as creations 
of the logical system, but nonetheless, they are of great utility in constructing 
consensual and infonnative statements about our experiences. By saying that 
these variables have no epistemological status, I mean that their fonn does not 
depend exclusively on any inherent characteristics of the experiences out of 
which they are modeled, and so they may be applied to any experiences, phys­
ical or otherwise. In fact, it may be that what we call physical those experiences 
that have already been cast successfully into the fonn of these variables. Two 
other variables will be of great interest to us. The first of these can be obtained 
again through the logic of functional analysis by multiplying Equation (16) by 
the velocity, dxldt to obtain: r 

vF=vma =J!l...A.. (vv) =.A..(m~ 
2dt dt 2' 

(21) 

and, multiply through by dt: 

Fdx=d(mfJ· (22) 

The quantity on the left side of Equation (22) is the product of the force and 
an infinitesimal distance, and represents the work done by the force through the 
interval of distances dx, although the quantity on the right hand side represents 
the differential element of the kinetic energy, so that: 
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T=mv 2 

2 
(23) 

defines a quantity called the kinetic energy, or the energy that an element (or atti­
tude) has by virtue of its motion. With this in mind, we can understand (22) as a 
definition that requires the differential element of the work to be equal to the dif­
ferential element of the kinetic energy. The work done, of course, is to change the 
magnitude of the kinetic energy. H the attitude moves through no force, there is 
no change in the kinetic energy. 

Although the mechanical system is not yet complete, it has alr~ady become 
useful as a vehicle for recording and ordering experiences. We may find, for 
example, after we deflect the attitude from its original position Xo to another posi­
tion xl that, even though subsequently left alone (that is, even though no com­
munication between the attitude and its environment takes place), neve$eless 
the attitude tends to return to its original position. Unlike the relationships we 
have discussed so far, this outcome is not required by the internal logic of the 
mechanical system, and we might just as well find that the attitude is "content" to 
remain wherever we put it Therefore, the extent to which an attitude tends to 
return to Its starting point represents an empirical finding. In fact, some research· 
has observed this effect (Woelfel, Holmes, Cody, & Fink, 1977), although it is out­
side the scope of this chapter to discuss the empirical character of the attitude 
domain. H this should be the case, however, we can obviously suggest that the 
work done moving the attitude from X I to x2 should be equal and opposite to the 
work required to move it back again fromx2 to Xl. Given this fact, along with the 
relationship between work and kinetic energy established in (22) and (23), we 
may see that the work required to move the attitude from Xl to x2 is given by 

l
X2 lXl Fdx=T -T =- Fdx=T-T q ~ ~ . ~ 
~ .. (24) 

where 1'x
2 
is the kinetic energy of the attitude at x2, Tx I is the kinetic energy of the 

attitude at Xl' and 

rX2 
Fdx is the total work done through the interval xCx2. 

JXl 
Equation (24) means that the total work exerted through the distance from Xl 

to x2 equals the change in the kinetic energy. Once again, if the force is zero (or 
perpendicular to the direction from Xl to x:0, no work is done and the kinetic 
energy remains constant 

From our definition (16) we know that the attitude will not accelerate back 
towards its starting point unless exposed to some force, but, because there is some 
point at which the attitude is stable, we know. that the restoring force is itself a 
function of the position of the attitude, or: 

F=F(x) , 
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then we can see that the sum of these forces acting through differential elements 
of distance between any two points will behave similarly to (24). We introduce 
the new quantity, V(x), which is given by: 

ix, Ix V(x} = F(x}dx=- F(x}dx=, 
x x, 

(25) 

. where V(x) is called the potential energy, and s is selected as a standard reference 
point Potential energy is that energy an element (or attitude) possesses by virtue 
of its position, and as long as the forces acting on the attitude depend only on its 
position, we may write, following (24) and (25): 

ix, 12 T;2 - T;, = F(x}dx+ F(x)dx 
XI Xs 

rx , r2 

= Jxs F(x}dx+ Jxs F(x)dx 

(26) 

From this, we can see that: 

T;+v" =T;+v" =T+V=E 
I I 2 2' 

where E is a constant called the total mechanical energy. As long as no forces from 
the environment impinge on the attitude system, this quantity, the total energy, 
remains a constant, or is conserved. 

Neither kinetic nor potential energy exist in nature other than as a conse­
quence of the comparative logic used and the stipulations or principles laid down, 
but they provide extremely useful conceptual structures against which we may 
gauge our experiences, particularly when defined in such a way as to remain 
invariant under conditions of no communication with the environment Both 
kinetic and potential energy are built up of several orders of ratios from the orig­
inal ratios on which measured values are established, and so, laTe complete con­
sequences of the character of the comp~ve logic. 

Another such variable, linear momentum, which was defined in (17) is also con­
served during conditions of isolation from its surroundings. H we multiply (16) by 
dt, we obtain: 

dv Fdt=m dt dt=d(mv) =dp, (26) 

where p is the linear momentum. 
Integrating between two times, tl and ~ yields: 
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(27) 

where the quantity on the left hand side of (27) is called the impulse delivered by 
the force F during the interval from tl to t2, Equation (27) defines the change in 
linear momentum over the interval of time to be equal to the impulse delivered 
by the force, and simultaneously asserts that the linear momentum will remain 
invariant if no force from the envirorunent is present 

This system of variables, as well as the interrelationships they obey, consti­
tutes a pattern against which we may express our experiences. Therefore the def­
initions we have presented of conserved quantities within the system should not 
be taken as arguments that such conservative systems exist because no system 
that actually exists is absolutely conservative. This is equivalent to saying that no 
empirical system is absolutely isolated from its envirorunent, and, furthermore, 
is an acknowledgment that the relationships any system has with its near sur­
roundings are likely to be too complicated to be expressed in minute detail. To 
the extent that quantities like energy and momentum are hot found to be con­
. served in an empirical system, nonconservative forces must be postulated. These 
departures from the conservative ideal are therefore attributed to "nonconserv­
ative forces," that may in tum be characterized as forces that cannot be ascribed 
to some specific action of the envirorunent As Triffet (1968) suggests, " ... non­
conservative forces can usually be recognized by the fact that they are not gra­
dients of time-independent scalar potential functions." Lanczos (1962) calls 
them "polygenic" for the same reason. In any event, insofar as they are residu­
als or "leftovers," they are nonetheless subject to calculation. In general, they will 
be found to be functions of time or velocity, and so, we may modify Equation 
(16) to yield: 

TTUl-P=O (28) 

where pc represents conservative forces, showing that the inertial forces (rna) 
minus the conservative forces equal zero when the system is not under the influ­
ence of any non conservative forces. This makes it easy to take account of 
time-dependent nonconservative forces by means of the expression: 

TTUl-P=F(t) , (29) 

and similarly, we may take account of velocity-dependent nonconservative 
forces by writing: 

TTUl - f' =F(v) . (30) 

There is, of course, no limit to the complexity of the situation that may be dealt 
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with in this way, and we may consider nonconservative forces that depend on 
both the velocities and the time by setting: 

rna -P=F(v,t) , (31) 

where the nonconservative function F can take on any form. 
Equation (29) does not constitute so much a discovery as a means of search­

ing, for it indicates that some anomaly has been detected in the system's perfor­
mance. What is actually accomplished. is simply the naming of the anomaly 
(force) and its expression as a function of time. In this situation, time serves as a 
surrogate variable against which other processes may be-calibrated so that they 
might be compared to each other. 

Time-dependent forces are commonplace in communication phenomena, 
particularly when they are cyclical, as they often are (for example, in daily or sea­
sonal fluctuations); they can easily be controlled, even if unexplained (See 
Barnett, Chang, Fink, & Richards, 1991). 

Velocity-dependent nonconservative forces are also common, and frequently 
depend on the velocity in a fairly simple way. Forces of friction or the resistance 
due to a viscous medium are examples of velocity-dependent forces that are rel­
atively simple functions of the velocity for physical systems, as is random error in 
mesSage transmission within human communication, or random forgetting in cul­
tural processes. 

As a simple example of nonconservative forces within a communication sy!!-
tem, consider a single attitude that has been dislodged fro~ its equilibrium posi­

. tion by some message. The notion that an equilibrium position exists means that 
there is a potential function; that is, the force acting on the attitude depends on its 
position. We further assume that random forces proportional to the velocity of 
attitude change must be considered (although it is useful for purposes of the 
example to consider them completely unknown); and so, we may write: 

rna+Cv+kv=O, (32) 

which means that the system will be in equilibrium under the forces due to iner­
tia (rna), the nonconservative velocity-dependent forces (Cv) and the restoring 
forces due to position (](x), of course, assuming there is no other communication 
with the environment The constant C represents the magnitude of the resistant 
force per unit of velocity, and the constant K represents the force per unit of 
deflection from the equilibrium point(assuming such forces are linear). 

Equation (32) clearly shows that the acceleration of the attitude will be zero at 
equilibrium, but the further the attitude is deflected from equilibrium, the 
stronger the forces that attempt to restore it to equilibrium. The more massive the 
attitude, the less quickly it will respond to those restoring forces. The higher the 
velocity of the attitude change, the greater the resistive forces slowing the change. 
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There is good reason to believe this equation (or one much like it) describes 
(at least to an order of approximation) the process of attitude change in humans 
and cultures. The restoring force is necessitated by the commonplace assumption" 
in communication theory that there exists an equilibrium position for beliefs, atti­
tudes, or, indeed whole cultures. This requires position-dependent potentials. 
The mass term recognizes the empirical fact that some attitudes, beliefs, and cul­
tuial elements are harder to change than others, and we simply specify some 
scalar value, based on measured resistance to change, which quantifies that dif­
ferential resistance. The velocity-dependent force is required because, as a little 
thought will show, otherwise, the system, once deflected from the equilibrium 
position, would oscillate endlessly around the equilibrium point. 

This Equation (32) models the system when it is isolated from its environ­
ment-when no communications are being received from the surround. It is easy, 
using the comparative logic, to extend (32) to the case in which communication 
from the surroundings is present, so that: 

rna+Cv+Kx=F (33) 

where Frepresents the force of the external communication. If the external com­
munication varies with the time, we may write: 

rna + Cv + Kx =F(t). (34) 

Equation (34), therefore, expresses the state of motion of the attitude at any. time 
as a fu.Jlction of the communication received from the surroundings. 

SYSTEMS OF MT.ITUDES AND BEliEFS 

Up to this point, we have dealt only with a single attitude, which may be inter­
preted as a single "object" (a friend) whose pOSition varies on a single dimension 
or attribute, (in this case, "affection"). The comparative logic, however, makes it 
possible to generalize this case to any degree of complexity. As a first step, we 
may consider the case of several objects varying independently along a single 
attribute. By "independently," we mean that the change in position of anyone of 
the objects has no effect over the position of any of the other objects. 

In this case, we may generalize (32) to the set of n independent equations: 

(35) 

where i is 7,2, .. . ,n, and n is the number of objects. 
Similarly, Equations (33) and (34) can be generalized by adding the index ito 

the force term. If the motions of the set of n objects are not independent of each 
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other, however, that is, if the motion of each object influences the motion of each 
of the others, then the motion of any object j depends on the characteristics of the 
others, and we may write: 

(36)6 

where i,j is 7,2, .. . ,n, or, for the case in which the system is in communication with 
its surroundings, 

miJ.{lj + Cilj + K;?j = Pj, (37) 

or, when the communication with the surroundings is time-dependent, 

miJ.{lj + elj + KiJxj = Pj(t), (38) 

i,j = 7,2, ... ,n. 

While equations represented in (38) are quite compact, they describe a very 
complex system of interrelationships. Briefly the equations in (38) say that the 
stat;e of motion of any of the attitudes j is determined by the masses of the i" atti­
tude and all n-7 of the others, by the resistive forces due to the velocities of all n 
particles, by the n(n-7)/2 pairwise forces expressing the mutual interactions of 
their potential energies due to their positions, and by the forces from outside the 
system. working directly on the i" attitude. 

As complicated as they are, equations (38) deal only with motions along a sin­
gle dimension or attribute, as we mentioned earlier. In a realistic individual or cul­
tural belief system, the defihltion of each object involves positions and motions 
with regard to many attributes, and so the equations in (38) remain incomplete. 
IT each of the attributes is perpendicular (independent) to each of the others, then 
we may proceed simply by adding another index I to (38), but it is possible to 
show a more general procedure that will work regardless of whether the attnbut­
es are orthogonal or not, or even in the case of general curvilinear coordinates. 

As we have seen, the state of motion of a system of beliefs may be described 
completely in terms of its potential energy, kinetic energy and outside (impressed) 
forces. This as we have seen is not a description of "reality" but rather a: conse­
quence of the logic of the descriptive system which is called "mechanical." When 
a belief changes within more than one dimension, the comparative logic system,' 
based as it is on ratios, allows us to establish the proportions of the kinetic energy, 
potential energy and forces which are projected on each of these dimensions. For 
the case of kinetic energy these variables may be projected on the two general­
ized coordinates axes (dimensions) q, and q2; The vectoi: Vrepresents the {arbi-

6 We adopt here the sununation convention, so that repeated indicies are to be summed over, and 
the sununation sign may be omitted. 
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trary) velocity of an arbitrary belief of mass m. The component V, of V project­
ed on q, is given by the ratio V;v, or, by an elementary result of geometry, V, = 
cos a. Working in the other direction, Vitself may be given in terms of its compo­
nents along th~ axes q, and qz by the generalized theorem of Pythagoras 

MUltiplying through by 112m gives the kinetic energy as a function of its projec­
tions on the generalized coordinates. When the generalized coordinates are lin­
ear and orthogonal (i.e., independent), e = 0 and the scalar product term 2V, Vz 
c/llB in (39) vanishes and the components of the kinetic energy become linearly 
additive. Even if the coordinates P, and Pz are curved in an arbitrary way, (39) 
will still be true for arbitrarily small elements, and we. may write: 

dJ12 = dVl + d~2 - 2dVj ~ cos9. (40) 

) 

where the d's refer, as previously, to the differential element The component of 
the velocity projected on the ilk axes is actually a ratio of infinitesimal elements, 
controlling for the projections on the other axes, which is represented by the par­
tial derivative: 

(41) 

and similarly, the component of the kinetic energy with regard to each of the gen-
eralized coordinates will be given by the same formalism as: ' 

as will the components of the potential energy: 

a v 
aT; . 

(42) 

(43) 

These expressions (41), (42) and (43) are ratios of infinitesimal arcs of the curved 
coordinates, controlling for all the other such ratios, and are therefore called par­
tial differential slopes. They are analogous to partial linear regression coefficients, 
except that they are generalized for the nonlinear case. 

Now that we have established the way in which the kinetic and potential ener­
gies will project on any ,arbitrary set of generalized coordinates, it only remains to 
establish in a precise way how these same energies are related tq the motion of a 
system on one dimension and a generalization to any number of arbitrary coor­
dinatesis possible. 

Although the chain of reasoning is lengthy, it is not difficult. To simplify the 
notation somewhat, we will define the derivative with regard to time according 
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to Newton's notation, so that: 

(44) 

where qi is the position of the belief projected onto the ilh generalized coordinate 
and vqi is the velocity of change of the belief projected onto the ilk generalized 
coordinate. 

Similarly, the second derivative: 

d dij. dtj. d2q. 
_ --l = ---.J =-' = q".= a tit tit df2 dt2 , g, ' 

(45) 

where aqi is the acceleration of the belief projected on the ith generalized coor­
dinate. 

Using this notation, and considering the one dimensional case in which the 
belief or attitude is varying only along a single attribute x, we may write: 

T· d m'2 ••• 
= tit 2 x =mxx, (46) 

which says, in words, that the time-derivative of the kinetic energy equals the 
. mass times the velocity times the aCceleration. This ~ggests that we take the 
derivative of (46) to eliminate the velocity term (recalling that a derivative is a 
ratio), so that we obtain: 

d T' .. dx =mx=ma, (47) 

which says, in words, that the derivative of the time derivative of the kinetic ener­
gy, with respect to velocity, equals the mass times the acceleration. This means 
that due to the comparative method, we are able to express the mass and accel­
erati!5n of a belief or attitude (or any object) in terms of its kinetic energy alone. 

As it turns out, we can express the force acting on a belief (at least conserva­
tive forces in the sense that we discussed them earlier) in terms of its potential 
energy. As we say in Expression (25), the increment in potential energy equals 
the negative of the work done. Yet work is force through distance, so the deriva­
tiveof the potential energy, with regard to the distance, is the force acting across 
an arbitrarily small distance. Formally, as we saw in (25), which we rewrite here 
without the subSCript designating the x dimension, the potential energy Vis equal 
to the integral of force over distance, or: 

V= J: Fdx, (48) 

and so, the potential energy at a point will be: 
I 

dV=Fdx. (49) 
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Dividing both sides by an arbitrary small distance dx gives: 

dV =F 
dx . (50) 

This, of course, is the ratio of the change in potential energy to a change in posi­
tion of the belief for'\'.el:Y small changes in position. 

Because we know that, for a conservative system, F = rna, we may write (using 
(47) and (50): 

or; equivalently, 

This is equivalent to: 

d· d -T--V=O dX dx . 

(51) 

" {52} 

(53) 

When working in a curvilinear nonorthogonal system, we need to perform 
these operations relative to the components of the kinetic and potential energies 
along the generalized coordinates qj' as we saw earlier. We learned how to do this 
in (42) and (43), and so, we may write: 

or, what is the same thing, 

d a T a v -(--)---=0 
dt a qj a qj , 

~(~ (T-V)) _~ (T-V) = 0 
dt a qj a qj , 

Setting L = T- V, we may write (55) as: 

d a L a L 
di(a- q;) -a- qj =0, 

. '(54) 

(55) 

(56) 

Expression (56) is the usual formulation of the equations of Lagrange for a con­
servative system not in communication with itsenvironmenl IT forces from the 
surroundings are impressed on the system, we may write: 

d a L a L -(--)---= Q; 
dt a qj a qj , 

(57) 

where the ~ refers to the generalized force components directed along the gen­
eralized coordinates. 
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Although very compact, the Lagrangian equations can encompass virtually 
infinite complexity, and the ramifications of these equations is far beyond the 
scope of this chapter. Nevertheless, we can hint at some of the range of commu­
nication systems to which these equations may refer by rewriting (57) as: 

daT av aT av -(-- ---) - (-- ---)= Q; 
dt a qj a qj a qj a qj 

(58) 

and then: 

daT dav.av aT 
-------+---~-=Q;. 
dt a qj dt a qj a qj a qj 

(59) 

As we have already noted, if the system is isolated and conservative, the right 
hand side ~ vanishes. IT the potential energy does not depend on the velocity (as 
it usually does not) the second term on the left vanishes; if the kinetic energy does 
not depend on position (as it usually does not), the fourth term on the left-hand 
side vanishes. In this case, the equations reduce to Newton's familiar Equation 
(14). This will also be true if there is no potential function, in which only the first 
term Will remain, but, in the absence of a generalized force term ~ on the right­
hand .side, this term will also vanish and there will be no acceleration. 

IT the kinetic energy depends on the velocities (as it usually does), and if a 
potential function can be defined as a function of position (which is a condition 
for a system having an equilibrium value, whether or not it is at or near such a 
value at any time) and if there are dissipative forces dependent on the velocities, 
then the second term on the left-hand side will not vanish and we will find a lin­
early resistive term like the second term in (34). Although this is only the briefest 
of sketches of the potential of the Lagrangian form, it should suffice to show that, 
although the Lagrangian equations are capable of expressing or describing vir­
tually any communication system or system of beliefs, attitudes, and their 
changes,they do not impose themselves on the system modeled, but rather 
adapt their shape to the system observed. Moreover, it is a language and logic 
capable of a much fuller description of these complexities than. is a verbal and 
categorical language. 

Moreover, the treatment is greatly simplifying. This is by no means to suggest 
that the process of working through the many equations presented in this chap­
ter, or the many more required to achieve actual solutionsJor interesting human 
belief systems is easy, but it is to say that, without such a system of thought, such 
has proven to be impossible. With some thought, it is possible to show, for exam­
ple, that to define the equations for any system of beliefs or attitudes is only nec­
essary for the theorist to specify the equilibrium state of the system so that a 
potential function may be defined. Once the potential energy function has been 
defined, .the remainder of the equations may be written down at once. 

Although it is true that the Lagrangian form does not impose itself on the sys­
tem under scrutiny, it is also the case that the Lagrangian formulation allows the 
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theorist to constrain the system with particular ease. This is due entirely to the fact 
that the Lagrangian equations may be expressed in terms of any generalized coor­
dinates, rather than exclusively rectilinear Cartesian coordinates. To give an 

. example of such constraints for an interesting communication situation, asSume 
two cultural belief systems, A and B, that inight represent the pattern of beliefs of 
two countries, groups, persons, or any social unit at all, about n concepts. Assume 
further that these groups are placed in communication with each other. IT on the­
oretical grounds (or prior measurement experience) we may stipulate that, with­
in each group, beliefs and opinions will not change relative to other beliefs and 
opinions, but solely with regard to those in the other group, then we have speci­
fied each system as a rigid body, i.e., a body in which distances ~ong any pair 
of points (beliefs or attitudes) remains invariant over time. Under these con­
straints, each structure A and B may move closer to or further from the other, 
and! or either A or B may rotate relative to the other. Assuming the internal struc­
ture of each culture has been measured with a Galileo-type procedure (Woelfel & 
Fmk, 1980), the cultural systems may be represented by (na +n~ concepts in an r 
dimensional space, where r is the number of dimensions in the larger space. 
Ordinarily, r(na +nJ equations would result from the Lagrangian formulation (or 
would be required in the Newtonian mode), but the constraints established by 
requiring each structure A and B to be rigid bodies reduces the number of para­
meters that need to be estimated substantially. Specifically, only the position of 
the center of one of the structures relative to the other is needed to specify the dis­
tance of A from B overall; r angles are needed to specify the orientation of each 
body relative to the other, because we need only specify the orientation 9f the 
axes of the first body to the axes of the second. (These angles are usually referred 
to as the Euler angles, after their discoverer L Euler). It requires rvariables (which 
may be interpreted as the r rectilinear coordiJ:tates of the center of one of the cul­
tural rigid bodies, xl~"' . .xr) to describe the location of the center of one of the 
structures in the space, and r additional variables that may be interpreted as the 
rposition or Euler angles aT' a2"'. , ~ to specify the state of orientation between 
the two bodies, so only 2r parameters are required. Because these themselves 
may depend on the time, we may write both the kinetic energies and the poten­
tial energies of the system as functions of 2r generalized coordinates: 

(60) 

and 

(61) 

In general, the Lagrangian form will yield nr-k equations where n is the num­
ber of concepts, r is the number of dimensions within which the process takes 

. place, and kis the number of constraints that may be established on the system a 
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priori. Although it is too early in the development of communication as a 
mechanical science to establish many solid constraints over the behaviors of 
beliefs and attitudes under general conditions, the constraints just discussed may 
be seen as a useful first approximation to the likely conditions that may prevail 
during the first stages of initial encounters between recently introduced cultures, 
because they will describe the rotations by means of which purely artifactual dif­
ferences of opinion (due solely to differences in orientation or viewpoint) are 
transformed away. 'This problem has been studied from a more technical point of 
view by Woelfel, Holmes, and Kincaid (1979), in which the potential energy func­
tion has been described as a least-squares minimum problem. 

CONCLUSION 

'This chapter has by no means established a complete mechanical science of com­
munication, and indeed the implication that such would be possible in a single 
short monograph runs contrary to the spirit of this work. Rather, we have tried to 
recognize the great empirical complexity of human communication systems, and 
on'this basis, have argued that the complexity is so great that the task of under­
standing such systems by means of a premechanical categorical model is hopeless. 
What we have tried to establish is not that a mechanical representation of human 
communication systems can be complete because the essence of scientific method 
consists in ignoring those aspects of any empirical situation that can be ignored 
without important loss. Any mechanical representation of any empirical system 
will always be, to some extent, an idealization. On the other hand, it does not fol­
low that because a mechanical representation is incomplete, it should be rejected; 
prior to such a decision, we must consider the available alternative models. As I 
have tried to show, the available alternative model-the categorical verbal model­
is c4amatically less complete. To a large extent, communication scholars have 
been prevented from realizing the advantages of a mechanical treatment because 
they have been misled as to what a mechanical model implies. I have tried to show 
that a mechanical model does not imply machines, or clockwork or wires and 
springs, but rather implies simply a wholly abstract logical form of argument Hit 
aids the imagination of any scholar to conceive of interacting beliefs as a set of 
points connected to each other by elastic strings moving through a volume of fluid, 
then he or she ought to, by all means, make use of such an analogy, and the 
Lagrangian equations will model the system effectively. However, the strings and 
fluids are only a picture in the mind of the investigator, and the equations have no 
need of them they Simply describe observed changes in a wholly abstract way. 

The essence of the mechanical model is the notion of proportionality. 
Mechanical theory makes statements about ~os of abstract quantities that have 
important counterparts in experience, only insofar as measurements of observa­
tions of experience have been made witlJ a proportional measurement system. 
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Attempts to cast categorical experiences into the logic of mechanical systems are 
bound to fail by fonnal logical reasons alone. Overwhelmingly, relatively casual 
efforts to fit categorical data {such as likert-type, semantic differential-type or even 
ordinal-type measures} into a mechanical fonnat, and of other logically indefensi­
ble practices such as substituting partial linear regression coefficients for partial dif­
ferentiaJ. regression coefficients into arbitrary functional relations have made it 
impossible to develop meaningful definitions of forte, mass, velocity, acceleration, 
work, momentum, and potential and kinetic energy within the human communi­
cation disciplines. As a consequence, thesetenns are used imprecisely and analo­
gously if at all. One may not simply use the words referring to concepts from 
mechanics.and assume, therefore, that one makes use of the concepts themselves. 

Of course, it may tum out that mechanical models of communication fail to 
produce the clarity and power that is implied in this chapter. No scientist would 
ever foreclose any possibility on the basis of reasoning alone. It should be' clear 
from this chapter, however; that there is no present baSis in evidence for saying 
that mechanical models do not fit human communication processes to useful tol­
erances. Such evidence, one way or the other, can only be provided by trying. 
Hopefully, insofar as it describes in some detail how a truly'mechanical model of 
communication might be developed, this,chapter might provide some impetus 
toward a rational answer to the question. 
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